Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On SYZ mirrors of Hirzebruch surfaces (2504.01889v2)

Published 2 Apr 2025 in math.SG and math.AG

Abstract: The Strominger-Yau-Zaslow (SYZ) approach to mirror symmetry constructs a mirror space and a superpotential from the data of a Lagrangian torus fibration on a K\"ahler manifold with effective first Chern class. For K\"ahler manifolds whose first Chern class is not nef, the SYZ construction is further complicated by the presence of additional holomorphic discs with non-positive Maslov index. In this paper, we study SYZ mirror symmetry for two of the simplest toric examples: the non-Fano Hirzebruch surfaces F_3 and F_4. For F_3, we determine the SYZ mirror associated to generic perturbations of the complex structure, and demonstrate that the SYZ mirror depends on the choice of perturbation. For F_4, we determine the SYZ mirror for a specific perturbation of complex structure, where the mirror superpotential is an explicit infinite Laurent series. Finally, we relate this superpotential to those arising from other perturbations of F_4 via a scattering diagram.

Summary

We haven't generated a summary for this paper yet.