Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spectral Lower Bound on Chromatic Numbers using $p$-Energy (2504.01295v5)

Published 2 Apr 2025 in math.CO

Abstract: Let $A_G $ be the adjacency matrix of a simple graph $ G $, and let $ \chi(G) $, $ \chi_f(G) $, $ \chi_q(G) $, $ \xi(G) $ and $ \xi_f(G) $ denote its chromatic number, fractional chromatic number, quantum chromatic number, orthogonal rank and projective rank, respectively. For $ p \geq 0 $, we define the positive and negative $ p $-energies of $ G $ by $$ \mathcal{E}p+(G) = \sum{\lambda_i > 0} \lambda_ip, \quad \mathcal{E}p-(G) = \sum{\lambda_i < 0} |\lambda_i|p, $$ where $ \lambda_1 \geq \cdots \geq \lambda_n $ are the eigenvalues of $A_G $. We prove that for all $ p \geq 0 $, $$ \chi(G) \geq \left{\chi_f(G), \chi_q(G), \xi(G) \right} \geq \xi_f(G) \geq 1 + \max\left{ \frac{\mathcal{E}_p+(G)}{\mathcal{E}_p-(G)}, \frac{\mathcal{E}_p-(G)}{\mathcal{E}_p+(G)} \right}{\frac{1}{|p - 1|}}. $$ This result unifies and strengthens a series of existing bounds corresponding to the cases $ p \in {0, 2, \infty} $. In particular, the case $ p = 0 $ yields the inertia bound $$ \chi_f(G) \geq \xi_f(G) \geq1 + \max\left{\frac{n+}{n-}, \frac{n-}{n+}\right}, $$ where $ n+ $ and $ n- $ denote the number of positive and negative eigenvalues of $ A_G $, respectively. This resolves two conjectures of Elphick and Wocjan. We also demonstrate that for certain graphs, non-integer values of $ p $ provide sharper lower bounds than existing spectral bounds. As an example, we determine $ \chi_q $ for the Tilley graph, which cannot be achieved using existing (unweighted) $p$-energy bounds. Our proof employs a novel synthesis of linear algebra and measure-theoretic tools, which allows us to surpass existing spectral bounds.

Summary

We haven't generated a summary for this paper yet.