Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density-valued time series: Nonparametric density-on-density regression (2503.22904v1)

Published 28 Mar 2025 in stat.ME and stat.AP

Abstract: This paper is concerned with forecasting probability density functions. Density functions are nonnegative and have a constrained integral; they thus do not constitute a vector space. Implementing unconstrained functional time-series forecasting methods is problematic for such nonlinear and constrained data. A novel forecasting method is developed based on a nonparametric function-on-function regression, where both the response and the predictor are probability density functions. Through a series of Monte-Carlo simulation studies, we evaluate the finite-sample performance of our nonparametric regression estimator. Using French departmental COVID19 data and age-specific period life tables in the United States, we assess and compare finite-sample forecast accuracy between the proposed and several existing methods.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com