Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLT for LES of correlated Non-Hermitian Random Matrices (2503.22542v3)

Published 28 Mar 2025 in math.PR, math-ph, and math.MP

Abstract: We consider two $n\times n$ non-Hermitian random matrices such that the $ij$th entry of one matrix is correlated with the $ij$th entry of the other matrix. However, the entries of any particular matrix are i.i.d. random variables. We study the asymptotic behavior of the combined spectrum, and the limit of the linear eigenvalue statistic defined on the combined spectrum. We show that if the random variables are centered with variance $1/n$ and having finite moments, then the centered \textit{Linear Eigenvalue Statistics} (LESs) converge jointly to a bivariate Gaussian distribution. We assumed that the test function used in the LES belongs to Sobolev $H{2+\delta}$ space. The variance of the limiting Gaussian distribution depends on correlation structure of the matrix entries and the fourth order mixed cumulants of the matrix entries. This generalizes the previous results by Rider, Silverstein (2006), Cipolloni, Erd\H{o}s, Schr\"oder (2023). In particular, we obtain the limiting LES of random centrosymmetric matrices.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com