Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets (2503.22513v1)

Published 28 Mar 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Martin Kišš (8 papers)
  2. Michal Hradiš (33 papers)

Summary

We haven't generated a summary for this paper yet.