Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic limit of the principal eigenvalue of asymmetric nonlocal diffusion operators and propagation dynamics (2503.22062v1)

Published 28 Mar 2025 in math.AP

Abstract: For fixed $c\in\mathbb R$, $l>0$ and a general non-symmetric kernel function $J(x)$ satisfying a standard assumption, we consider the nonlocal diffusion operator \begin{align*} \bf{L}{J, c}{(-l,l)}\phi:=\int{-l}lJ(x-y)\phi(y)\,dy+c\phi'(x), \end{align*} and prove that its principal eigenvalue $\lambda_p(\bf{L}{J, c}{(-l,l)})$ has the following asymptotic limit: \begin{equation*}\label{l-to-infty-c} \lim\limits{l\to \infty}\lambda_p(\bf {L}{J, c}{(-l,l)})=\inf\limits{\nu\in\mathbb{R}}\big[\int_{\mathbb{R}}J(x)e{-\nu x}\,dx+c\nu\big]. \end{equation*} We then demonstrate how this result can be applied to determine the propagation dynamics of the associated Cauchy problem \begin{equation*} \label{cau} \left{ \begin{array}{ll} \displaystyle u_t = d \big[\int_{\mathbb{R}} J(x-y) u(t,y) \, dy - u(t,x)\big] + f(u), & t > 0, \; x \in \mathbb{R}, u(0, x) = u_0(x), & x \in \mathbb{R}, \end{array} \right. \end{equation*} with a KPP nonlinear term $f(u)$. This provides a new approach to understand the propagation dynamics of KPP type models, very different from those based on traveling wave solutions or on the dynamical systems method of Weinberger (1982).

Summary

We haven't generated a summary for this paper yet.