Asymptotic limit of the principal eigenvalue of asymmetric nonlocal diffusion operators and propagation dynamics (2503.22062v1)
Abstract: For fixed $c\in\mathbb R$, $l>0$ and a general non-symmetric kernel function $J(x)$ satisfying a standard assumption, we consider the nonlocal diffusion operator \begin{align*} \bf{L}{J, c}{(-l,l)}\phi:=\int{-l}lJ(x-y)\phi(y)\,dy+c\phi'(x), \end{align*} and prove that its principal eigenvalue $\lambda_p(\bf{L}{J, c}{(-l,l)})$ has the following asymptotic limit: \begin{equation*}\label{l-to-infty-c} \lim\limits{l\to \infty}\lambda_p(\bf {L}{J, c}{(-l,l)})=\inf\limits{\nu\in\mathbb{R}}\big[\int_{\mathbb{R}}J(x)e{-\nu x}\,dx+c\nu\big]. \end{equation*} We then demonstrate how this result can be applied to determine the propagation dynamics of the associated Cauchy problem \begin{equation*} \label{cau} \left{ \begin{array}{ll} \displaystyle u_t = d \big[\int_{\mathbb{R}} J(x-y) u(t,y) \, dy - u(t,x)\big] + f(u), & t > 0, \; x \in \mathbb{R}, u(0, x) = u_0(x), & x \in \mathbb{R}, \end{array} \right. \end{equation*} with a KPP nonlinear term $f(u)$. This provides a new approach to understand the propagation dynamics of KPP type models, very different from those based on traveling wave solutions or on the dynamical systems method of Weinberger (1982).