Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Crystal Structure Prediction Using Genetic Algorithm and Universal Neural Network Potential (2503.21201v2)

Published 27 Mar 2025 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: Crystal structure prediction (CSP) is crucial for identifying stable crystal structures in given systems and is a prerequisite for computational atomistic simulations. Recent advances in neural network potentials (NNPs) have reduced the computational cost of CSP. However, searching for stable crystal structures across the entire composition space in multicomponent systems remains a significant challenge. Here, we propose a novel genetic algorithm (GA) -based CSP method using a universal NNP. Our GA-based methods are designed to efficiently expand convex hull volumes while preserving the diversity of crystal structures. This approach draws inspiration from the similarity between convex hull updates and Pareto front evolution in multi-objective optimization. Our evaluation shows that the present method outperforms the symmetry-aware random structure generation, achieving a larger convex hull with fewer trials. We demonstrated that our approach, combined with the developed universal NNP (PFP), can accurately reproduce and explore phase diagrams obtained through DFT calculations; this indicates the validity of PFP across a wide range of crystal structures and element combinations. This study, which integrates a universal NNP with a GA-based CSP method, highlights the promise of these methods in materials discovery.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com