Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cubature Kalman Filter as a Robust State Estimator Against Model Uncertainty and Cyber Attacks in Power Systems (2503.21070v1)

Published 27 Mar 2025 in eess.SY and cs.SY

Abstract: It is known that the conventional estimators such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) may provide favorable performance; However, they may not guarantee the robustness against model uncertainty and cyber attacks. In this paper, we compare the performance of cubature Kalman filter (CKF) to the conventional nonlinear estimator, the EKF, under the affect of model uncertainty and cyber-attack. We show that the CKF has better estimation accuracy than the EKF under some conditions. In order to verify our claim, we have tested the performance various nonlinear estimators on the single machine infinite-bus (SMIB) system under different scenarios. We show that (1) the CKF provides better estimation results than the EKF; (2) the CKF is able to detect different types of cyber attacks reliably which is superior to the EKF.

Summary

We haven't generated a summary for this paper yet.