Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

A Semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations with Dirichlet boundary conditions (2503.20283v1)

Published 26 Mar 2025 in math.NA, cs.NA, and math.OC

Abstract: We study the numerical approximation of time-dependent, possibly degenerate, second-order Hamilton-Jacobi-BeLLMan equations in bounded domains with nonhomogeneous Dirichlet boundary conditions. It is well known that convergence towards the exact solution of the equation, considered here in the viscosity sense, holds if the scheme is monotone, consistent, and stable. While standard finite difference schemes are, in general, not monotone, the so-called semi-Lagrangian schemes are monotone by construction. On the other hand, these schemes make use of a wide stencil and, when the equation is set in a bounded domain, this typically causes an overstepping of the boundary and hence the loss of consistency. We propose here a semi-Lagrangian scheme defined on an unstructured mesh, with a suitable treatment at grid points near the boundary to preserve consistency, and show its convergence for problems where the viscosity solution can even be discontinuous. We illustrate the numerical convergence in several tests, including degenerate and first-order equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.