Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixseeker: An Empirical Driven Graph-based Approach for Detecting Silent Vulnerability Fixes in Open Source Software (2503.20265v1)

Published 26 Mar 2025 in cs.SE

Abstract: Open source software vulnerabilities pose significant security risks to downstream applications. While vulnerability databases provide valuable information for mitigation, many security patches are released silently in new commits of OSS repositories without explicit indications of their security impact. This makes it challenging for software maintainers and users to detect and address these vulnerability fixes. There are a few approaches for detecting vulnerability-fixing commits (VFCs) but most of these approaches leverage commit messages, which would miss silent VFCs. On the other hand, there are some approaches for detecting silent VFCs based on code change patterns but they often fail to adequately characterize vulnerability fix patterns, thereby lacking effectiveness. For example, some approaches analyze each hunk in known VFCs, in isolation, to learn vulnerability fix patterns; but vulnerabiliy fixes are often associated with multiple hunks, in which cases correlations of code changes across those hunks are essential for characterizing the vulnerability fixes. To address these problems, we first conduct a large-scale empirical study on 11,900 VFCs across six programming languages, in which we found that over 70% of VFCs involve multiple hunks with various types of correlations. Based on our findings, we propose Fixseeker, a graph-based approach that extracts the various correlations between code changes at the hunk level to detect silent vulnerability fixes. Our evaluation demonstrates that Fixseeker outperforms state-of-the-art approaches across multiple programming languages, achieving a high F1 score of 0.8404 on average in balanced datasets and consistently improving F1 score, AUC-ROC and AUC-PR scores by 32.40%, 1.55% and 8.24% on imbalanced datasets. Our evaluation also indicates the generality of Fixseeker across different repository sizes and commit complexities.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com