Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Stochastic Matching with Unknown Arrival Order: Beating $0.5$ against the Online Optimum (2503.19456v1)

Published 25 Mar 2025 in cs.DS

Abstract: We study the online stochastic matching problem. Against the offline benchmark, Feldman, Gravin, and Lucier (SODA 2015) designed an optimal $0.5$-competitive algorithm. A recent line of work, initiated by Papadimitriou, Pollner, Saberi, and Wajc (MOR 2024), focuses on designing approximation algorithms against the online optimum. The online benchmark allows positive results surpassing the $0.5$ ratio. In this work, adapting the order-competitive analysis by Ezra, Feldman, Gravin, and Tang (SODA 2023), we design a $0.5+\Omega(1)$ order-competitive algorithm against the online benchmark with unknown arrival order. Our algorithm is significantly different from existing ones, as the known arrival order is crucial to the previous approximation algorithms.

Summary

We haven't generated a summary for this paper yet.