Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Protein Structure-Function Relationship: A Kernel-PCA Approach for Reaction Coordinate Identification (2503.19186v1)

Published 24 Mar 2025 in cs.CL and q-bio.QM

Abstract: In this study, we propose a Kernel-PCA model designed to capture structure-function relationships in a protein. This model also enables ranking of reaction coordinates according to their impact on protein properties. By leveraging machine learning techniques, including Kernel and principal component analysis (PCA), our model uncovers meaningful patterns in high-dimensional protein data obtained from molecular dynamics (MD) simulations. The effectiveness of our model in accurately identifying reaction coordinates has been demonstrated through its application to a G protein-coupled receptor. Furthermore, this model utilizes a network-based approach to uncover correlations in the dynamic behavior of residues associated with a specific protein property. These findings underscore the potential of our model as a powerful tool for protein structure-function analysis and visualization.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com