Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis (2503.19066v1)

Published 24 Mar 2025 in math.PR and stat.ML

Abstract: Langevin algorithms are popular Markov chain Monte Carlo methods that are often used to solve high-dimensional large-scale sampling problems in machine learning. The most classical Langevin Monte Carlo algorithm is based on the overdamped Langevin dynamics. There are many variants of Langevin dynamics that often show superior performance in practice. In this paper, we provide a unified approach to study the acceleration of the variants of the overdamped Langevin dynamics through the lens of large deviations theory. Numerical experiments using both synthetic and real data are provided to illustrate the efficiency of these variants.

Summary

We haven't generated a summary for this paper yet.