Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cache-Aware Cooperative Multicast Beamforming in Dynamic Satellite-Terrestrial Networks (2503.17913v1)

Published 23 Mar 2025 in cs.NI and eess.SP

Abstract: With the burgeoning demand for data-intensive services, satellite-terrestrial networks (STNs) face increasing backhaul link congestion, deteriorating user quality of service (QoS), and escalating power consumption. Cache-aided STNs are acknowledged as a promising paradigm for accelerating content delivery to users and alleviating the load of backhaul links. However, the dynamic nature of low earth orbit (LEO) satellites and the complex interference among satellite beams and terrestrial base stations pose challenges in effectively managing limited edge resources. To address these issues, this paper proposes a method for dynamically scheduling caching and communication resources, aiming to reduce network costs in terms of transmission power consumption and backhaul traffic, while meeting user QoS demands and resource constraints. We formulate a mixed timescale problem to jointly optimize cache placement, LEO satellite beam direction, and cooperative multicast beamforming among satellite beams and base stations. To tackle this intricate problem, we propose a two-stage solution framework, where the primary problem is decoupled into a short-term content delivery subproblem and a long-term cache placement subproblem. The former subproblem is solved by designing an alternating optimization approach with whale optimization and successive convex approximation methods according to the cache placement state, while cache content in STNs is updated using an iterative algorithm that utilizes historical information. Simulation results demonstrate the effectiveness of our proposed algorithms, showcasing their convergence and significantly reducing transmission power consumption and backhaul traffic by up to 52%.

Summary

We haven't generated a summary for this paper yet.