Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Convex Optimization with Quantum Gradient Methods (2503.17356v2)

Published 21 Mar 2025 in quant-ph

Abstract: We study quantum algorithms based on quantum (sub)gradient estimation using noisy function evaluation oracles, and demonstrate the first dimension-independent query complexities (up to poly-logarithmic factors) for zeroth-order convex optimization in both smooth and nonsmooth settings. Interestingly, only using noisy function evaluation oracles, we match the first-order query complexities of classical gradient descent, thereby exhibiting exponential separation between quantum and classical zeroth-order optimization. We then generalize these algorithms to work in non-Euclidean settings by using quantum (sub)gradient estimation to instantiate mirror descent and its variants, including dual averaging and mirror prox. By leveraging a connection between semidefinite programming and eigenvalue optimization, we use our quantum mirror descent method to give a new quantum algorithm for solving semidefinite programs, linear programs, and zero-sum games. We identify a parameter regime in which our zero-sum games algorithm is faster than any existing classical or quantum approach.

Summary

We haven't generated a summary for this paper yet.