Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RiboFlow: Conditional De Novo RNA Sequence-Structure Co-Design via Synergistic Flow Matching (2503.17007v2)

Published 21 Mar 2025 in q-bio.BM

Abstract: Ribonucleic acid (RNA) binds to molecules to achieve specific biological functions. While generative models are advancing biomolecule design, existing methods for designing RNA that target specific ligands face limitations in capturing RNA's conformational flexibility, ensuring structural validity, and overcoming data scarcity. To address these challenges, we introduce RiboFlow, a synergistic flow matching model to co-design RNA structures and sequences based on target molecules. By integrating RNA backbone frames, torsion angles, and sequence features in an unified architecture, RiboFlow explicitly models RNA's dynamic conformations while enforcing sequence-structure consistency to improve validity. Additionally, we curate RiboBind, a large-scale dataset of RNA-molecule interactions, to resolve the scarcity of high-quality structural data. Extensive experiments reveal that RiboFlow not only outperforms state-of-the-art RNA design methods by a large margin but also showcases controllable capabilities for achieving high binding affinity to target ligands. Our work bridges critical gaps in controllable RNA design, offering a framework for structure-aware, data-efficient generation.

Summary

We haven't generated a summary for this paper yet.