Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty-Driven Modeling of Microporosity and Permeability in Clastic Reservoirs Using Random Forest (2503.16957v1)

Published 21 Mar 2025 in physics.geo-ph and cs.LG

Abstract: Predicting microporosity and permeability in clastic reservoirs is a challenge in reservoir quality assessment, especially in formations where direct measurements are difficult or expensive. These reservoir properties are fundamental in determining a reservoir's capacity for fluid storage and transmission, yet conventional methods for evaluating them, such as Mercury Injection Capillary Pressure (MICP) and Scanning Electron Microscopy (SEM), are resource-intensive. The aim of this study is to develop a cost-effective machine learning model to predict complex reservoir properties using readily available field data and basic laboratory analyses. A Random Forest classifier was employed, utilizing key geological parameters such as porosity, grain size distribution, and spectral gamma-ray (SGR) measurements. An uncertainty analysis was applied to account for natural variability, expanding the dataset, and enhancing the model's robustness. The model achieved a high level of accuracy in predicting microporosity (93%) and permeability levels (88%). By using easily obtainable data, this model reduces the reliance on expensive laboratory methods, making it a valuable tool for early-stage exploration, especially in remote or offshore environments. The integration of machine learning with uncertainty analysis provides a reliable and cost-effective approach for evaluating key reservoir properties in siliciclastic formations. This model offers a practical solution to improve reservoir quality assessments, enabling more informed decision-making and optimizing exploration efforts.

Summary

We haven't generated a summary for this paper yet.