Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QCPINN: Quantum-Classical Physics-Informed Neural Networks for Solving PDEs (2503.16678v4)

Published 20 Mar 2025 in quant-ph and cs.LG

Abstract: Physics-informed neural networks (PINNs) have emerged as promising methods for solving partial differential equations (PDEs) by embedding physical laws within neural architectures. However, these classical approaches often require a large number of parameters to achieve reasonable accuracy, particularly for complex PDEs. In this paper, we present a quantum-classical physics-informed neural network (QCPINN) that combines quantum and classical components, allowing us to solve PDEs with significantly fewer parameters while maintaining comparable accuracy and convergence to classical PINNs. We systematically evaluated two quantum circuit architectures across various configurations on five benchmark PDEs to identify optimal QCPINN designs. Our results demonstrate that the QCPINN achieves stable convergence and comparable accuracy, while requiring approximately 10% of the trainable parameters used in classical approaches. It also results in a 40% reduction in the relative error L2 for the convection-diffusion equation. These findings demonstrate the potential of parameter efficiency as a measurable quantum advantage in physics-informed machine learning, significantly reducing model complexity while preserving solution quality. This approach presents a promising solution to the computational challenges associated with solving PDEs.

Summary

We haven't generated a summary for this paper yet.