Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature selection strategies for optimized heart disease diagnosis using ML and DL models (2503.16577v1)

Published 20 Mar 2025 in cs.LG and cs.AI

Abstract: Heart disease remains one of the leading causes of morbidity and mortality worldwide, necessitating the development of effective diagnostic tools to enable early diagnosis and clinical decision-making. This study evaluates the impact of feature selection techniques Mutual Information (MI), Analysis of Variance (ANOVA), and Chi-Square on the predictive performance of various ML and deep learning (DL) models using a dataset of clinical indicators for heart disease. Eleven ML/DL models were assessed using metrics such as precision, recall, AUC score, F1-score, and accuracy. Results indicate that MI outperformed other methods, particularly for advanced models like neural networks, achieving the highest accuracy of 82.3% and recall score of 0.94. Logistic regression (accuracy 82.1%) and random forest (accuracy 80.99%) also demonstrated improved performance with MI. Simpler models such as Naive Bayes and decision trees achieved comparable results with ANOVA and Chi-Square, yielding accuracies of 76.45% and 75.99%, respectively, making them computationally efficient alternatives. Conversely, k Nearest Neighbors (KNN) and Support Vector Machines (SVM) exhibited lower performance, with accuracies ranging between 51.52% and 54.43%, regardless of the feature selection method. This study provides a comprehensive comparison of feature selection methods for heart disease prediction, demonstrating the critical role of feature selection in optimizing model performance. The results offer practical guidance for selecting appropriate feature selection techniques based on the chosen classification algorithm, contributing to the development of more accurate and efficient diagnostic tools for enhanced clinical decision-making in cardiology.

Summary

We haven't generated a summary for this paper yet.