Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Medically-Informed Explanations for Depression Detection using LLMs (2503.14671v1)

Published 18 Mar 2025 in cs.CL

Abstract: Early detection of depression from social media data offers a valuable opportunity for timely intervention. However, this task poses significant challenges, requiring both professional medical knowledge and the development of accurate and explainable models. In this paper, we propose LLM-MTD (LLM for Multi-Task Depression Detection), a novel approach that leverages a pre-trained LLM to simultaneously classify social media posts for depression and generate textual explanations grounded in medical diagnostic criteria. We train our model using a multi-task learning framework with a combined loss function that optimizes both classification accuracy and explanation quality. We evaluate LLM-MTD on the benchmark Reddit Self-Reported Depression Dataset (RSDD) and compare its performance against several competitive baseline methods, including traditional machine learning and fine-tuned BERT. Our experimental results demonstrate that LLM-MTD achieves state-of-the-art performance in depression detection, showing significant improvements in AUPRC and other key metrics. Furthermore, human evaluation of the generated explanations reveals their relevance, completeness, and medical accuracy, highlighting the enhanced interpretability of our approach. This work contributes a novel methodology for depression detection that combines the power of LLMs with the crucial aspect of explainability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiangyong Chen (3 papers)
  2. Xiaochuan Lin (3 papers)