Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text-Guided Image Invariant Feature Learning for Robust Image Watermarking (2503.13805v1)

Published 18 Mar 2025 in cs.CV, cs.LG, and cs.MM

Abstract: Ensuring robustness in image watermarking is crucial for and maintaining content integrity under diverse transformations. Recent self-supervised learning (SSL) approaches, such as DINO, have been leveraged for watermarking but primarily focus on general feature representation rather than explicitly learning invariant features. In this work, we propose a novel text-guided invariant feature learning framework for robust image watermarking. Our approach leverages CLIP's multimodal capabilities, using text embeddings as stable semantic anchors to enforce feature invariance under distortions. We evaluate the proposed method across multiple datasets, demonstrating superior robustness against various image transformations. Compared to state-of-the-art SSL methods, our model achieves higher cosine similarity in feature consistency tests and outperforms existing watermarking schemes in extraction accuracy under severe distortions. These results highlight the efficacy of our method in learning invariant representations tailored for robust deep learning-based watermarking.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com