Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal mixed fleet and charging infrastructure planning to electrify demand responsive feeder services with target CO2 emission constraints (2503.13085v1)

Published 17 Mar 2025 in math.OC

Abstract: Electrifying demand-responsive transport systems need to plan the charging infrastructure carefully, considering the trade-offs of charging efficiency and charging infrastructure costs. Earlier studies assume a fully electrified fleet and overlook the planning issue in the transition period. This study addresses the joint fleet size and charging infrastructure planning for a demand-responsive feeder service under stochastic demand, given a user-defined targeted CO2 emission reduction policy. We propose a bi-level optimization model where the upper-level determines charging station configuration given stochastic demand patterns, whereas the lower-level solves a mixed fleet dial-a-ride routing problem under the CO2 emission and capacitated charging station constraints. An efficient deterministic annealing metaheuristic is proposed to solve the CO2-constrained mixed fleet routing problem. The performance of the algorithm is validated by a series of numerical test instances with up to 500 requests. We apply the model for a real-world case study in Bettembourg, Luxembourg, with different demand and customised CO2 reduction targets. The results show that the proposed method provides a flexible tool for joint charging infrastructure and fleet size planning under different levels of demand and CO2 emission reduction targets.

Summary

We haven't generated a summary for this paper yet.