Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text-Driven Video Style Transfer with State-Space Models: Extending StyleMamba for Temporal Coherence (2503.12291v1)

Published 15 Mar 2025 in cs.GR

Abstract: StyleMamba has recently demonstrated efficient text-driven image style transfer by leveraging state-space models (SSMs) and masked directional losses. In this paper, we extend the StyleMamba framework to handle video sequences. We propose new temporal modules, including a \emph{Video State-Space Fusion Module} to model inter-frame dependencies and a novel \emph{Temporal Masked Directional Loss} that ensures style consistency while addressing scene changes and partial occlusions. Additionally, we introduce a \emph{Temporal Second-Order Loss} to suppress abrupt style variations across consecutive frames. Our experiments on DAVIS and UCF101 show that the proposed approach outperforms competing methods in terms of style consistency, smoothness, and computational efficiency. We believe our new framework paves the way for real-time text-driven video stylization with state-of-the-art perceptual results.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets