Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Deep Learning-Based Approach to Automating Invoice Document Validation (2503.12267v1)

Published 15 Mar 2025 in cs.CV

Abstract: In large organizations, the number of financial transactions can grow rapidly, driving the need for fast and accurate multi-criteria invoice validation. Manual processing remains error-prone and time-consuming, while current automated solutions are limited by their inability to support a variety of constraints, such as documents that are partially handwritten or photographed with a mobile phone. In this paper, we propose to automate the validation of machine written invoices using document layout analysis and object detection techniques based on recent deep learning (DL) models. We introduce a novel dataset consisting of manually annotated real-world invoices and a multi-criteria validation process. We fine-tune and benchmark the most relevant DL models on our dataset. Experimental results show the effectiveness of the proposed pipeline and selected DL models in terms of achieving fast and accurate validation of invoices.

Summary

We haven't generated a summary for this paper yet.