Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayes and Biased Estimators Without Hyper-parameter Estimation: Comparable Performance to the Empirical-Bayes-Based Regularized Estimator (2503.11854v1)

Published 14 Mar 2025 in stat.ML, cs.LG, cs.SY, and eess.SY

Abstract: Regularized system identification has become a significant complement to more classical system identification. It has been numerically shown that kernel-based regularized estimators often perform better than the maximum likelihood estimator in terms of minimizing mean squared error (MSE). However, regularized estimators often require hyper-parameter estimation. This paper focuses on ridge regression and the regularized estimator by employing the empirical Bayes hyper-parameter estimator. We utilize the excess MSE to quantify the MSE difference between the empirical-Bayes-based regularized estimator and the maximum likelihood estimator for large sample sizes. We then exploit the excess MSE expressions to develop both a family of generalized Bayes estimators and a family of closed-form biased estimators. They have the same excess MSE as the empirical-Bayes-based regularized estimator but eliminate the need for hyper-parameter estimation. Moreover, we conduct numerical simulations to show that the performance of these new estimators is comparable to the empirical-Bayes-based regularized estimator, while computationally, they are more efficient.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets