Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vanishing coefficient results in four families of infinite q-products (2503.11670v1)

Published 26 Feb 2025 in math.CO and math.NT

Abstract: In the recent past, the work in the area of vanishing coefficients of infinite $q$-products has been taken to the forefront. Weaving the same thread as Ramanujan, Richmond, Szekeres, Andrews, Alladi, Gordon, Mc Laughlin, Baruah, Kaur, Tang, we further prove vanishing coefficients in arithmetic progressions moduli 5, 7, 11, 13, 19, 21, 23 and 29 of the following four families of infinite products, where ${X_{a,b,sm,km,u,v}(n)}{n\geq n_0}$, ${Y{a,b,sm,km,u,v}(n)}{n\geq n_0}$, ${Z{a,b,sm,km,u,v}(n)}{n\geq n_0}$ and ${W{a,b,sm,km,u,v}(n) }{n\geq n_0}$ are defined by \begin{align*} \sum{n\geq n_0}{\infty}X_{a,b,sm,km,u,v}(n)qn:=&(q{a},q{sm-a};q{sm}){infty}u(q{b},q{km-b};q{km}){infty}v, \ \sum_{n\geq n_0}{\infty}Y_{a,b,sm,km,u,v}(n)qn:=&(q{a},q{sm-a};q{sm}){infty}u(-q{b},-q{km-b};q{km}){infty}v, \ \sum_{n\geq n_0}{\infty}Z_{a,b,sm,km,u,v}(n)qn:=&(-q{a},-q{sm-a};q{sm}){infty}u(q{b},q{km-b};q{km}){infty}v,\ \sum_{n\geq n_0}{\infty}W_{a,b,sm,km,u,v}(n)qn:=&(-q{a},-q{sm-a};q{sm}){infty}u(-q{b},-q{km-b};q{km}){infty}v, \end{align*} here $a, b, s, k, u$ and $v$ are chosen in such a way that the infinite products in the right-hand side of the above are convergent and $n_0$ is an integer (possibly negative or zero) depending on $a, b, s, k, u$ and $v$. The proof uses the Jacobi triple product identity and the properties of Ramanujan general theta function.

Summary

We haven't generated a summary for this paper yet.