Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TRUTH DECAY: Quantifying Multi-Turn Sycophancy in Language Models (2503.11656v1)

Published 4 Feb 2025 in cs.CL

Abstract: Rapid improvements in LLMs have unveiled a critical challenge in human-AI interaction: sycophancy. In this context, sycophancy refers to the tendency of models to excessively agree with or flatter users, often at the expense of factual accuracy. While previous studies have primarily analyzed this behavior in single-turn interactions, its persistence and evolution in multi-step conversations remain largely unexplored. We introduce TRUTH DECAY, a benchmark specifically designed to evaluate sycophancy in extended dialogues, where LLMs must navigate iterative user feedback, challenges, and persuasion. We prompt models to elicit four types of sycophantic biases. We then propose and test sycophancy reduction strategies, evaluating their effectiveness beyond single-step interactions.

Summary

We haven't generated a summary for this paper yet.