Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Multi-View Pedestrian Detection Using Probabilistic Occupancy Volume (2503.10982v1)

Published 14 Mar 2025 in cs.CV

Abstract: Occlusion poses a significant challenge in pedestrian detection from a single view. To address this, multi-view detection systems have been utilized to aggregate information from multiple perspectives. Recent advances in multi-view detection utilized an early-fusion strategy that strategically projects the features onto the ground plane, where detection analysis is performed. A promising approach in this context is the use of 3D feature-pulling technique, which constructs a 3D feature volume of the scene by sampling the corresponding 2D features for each voxel. However, it creates a 3D feature volume of the whole scene without considering the potential locations of pedestrians. In this paper, we introduce a novel model that efficiently leverages traditional 3D reconstruction techniques to enhance deep multi-view pedestrian detection. This is accomplished by complementing the 3D feature volume with probabilistic occupancy volume, which is constructed using the visual hull technique. The probabilistic occupancy volume focuses the model's attention on regions occupied by pedestrians and improves detection accuracy. Our model outperforms state-of-the-art models on the MultiviewX dataset, with an MODA of 97.3%, while achieving competitive performance on the Wildtrack dataset.

Summary

We haven't generated a summary for this paper yet.