Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the numerical approximation of minimax regret rules via fictitious play (2503.10932v1)

Published 13 Mar 2025 in econ.EM

Abstract: Finding numerical approximations to minimax regret treatment rules is of key interest. To do so when potential outcomes are in {0,1} we discretize the action space of nature and apply a variant of Robinson's (1951) algorithm for iterative solutions for finite two-person zero sum games. Our approach avoids the need to evaluate regret of each treatment rule in each iteration. When potential outcomes are in [0,1] we apply the so-called coarsening approach. We consider a policymaker choosing between two treatments after observing data with unequal sample sizes per treatment and the case of testing several innovations against the status quo.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com