Nonlinear Fokker-Planck equations as smooth Hilbertian gradient flows (2503.10906v1)
Abstract: Under suitable assumptions on $\beta:\mathbb{R}!\to!\mathbb{R}, \,D:\mathbb{R}d!\to!\mathbb{R}d$ and $b:\mathbb{R}d!\to!\mathbb{R}$, the nonlinear Fokker-Planck equation $u_t-\Delta\beta(u)+{\rm div}(Db(u)u)=0$, in $(0,\infty)\times\mathbb{R}d$ where $D=-\nabla\Phi$, can be identified as a smooth gradient flow $\frac{d+}{dt}\,u(t)+\nabla E_{u(t)}=0$, $\forall t>0$. Here, $E:\mathcal{P}*\cap L\infty(\mathbb{R}d)\to\mathbb{R}$ is the energy function associated to the equation, where $\mathcal{P}*$ is a certain convex subset of the space of probability densities. $\mathcal{P}*$ is invariant under the flow and $\nabla E_u$ is the gradient of $E$, that is, the tangent vector field to $\mathcal{P}$ at $u$ defined by $\left<\nabla E_u,z_u\right>_u={\rm diff}\,E_u\cdot z_u$ for all vector fields $z_u$ on $\mathcal{P}*$, where $\left<\cdot,\cdot\right>_u$ is a scalar product on a suitable tangent space $\mathcal{T}_u(\mathcal{P}*)\subset\mathcal{D}'(\mathbb{R}d)$.