Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Pollutant Identification through Optical PM Micro-Sensor (2503.10724v1)

Published 13 Mar 2025 in cs.LG and eess.SP

Abstract: Air pollution remains one of the most pressing environmental challenges of the modern era, significantly impacting human health, ecosystems, and climate. While traditional air quality monitoring systems provide critical data, their high costs and limited spatial coverage hinder effective real-time pollutant identification. Recent advancements in micro-sensor technology have improved data collection but still lack efficient methods for source identification. This paper explores the innovative application of ML models to classify pollutants in real-time using only data from optical micro-sensors. We propose a novel classification framework capable of distinguishing between four pollutant scenarios: Background Pollution, Ash, Sand, and Candle. Three Machine Learning (ML) approaches - XGBoost, Long Short-Term Memory networks, and Hidden Markov Chains - are evaluated for their effectiveness in sequence modeling and pollutant identification. Our results demonstrate the potential of leveraging micro-sensors and ML techniques to enhance air quality monitoring, offering actionable insights for urban planning and environmental protection.

Summary

We haven't generated a summary for this paper yet.