Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parallel and Highly-Portable HPC Poisson Solver: Preconditioned Bi-CGSTAB with alpaka (2503.08935v1)

Published 11 Mar 2025 in cs.DC

Abstract: This paper presents the design, implementation, and performance analysis of a parallel and GPU-accelerated Poisson solver based on the Preconditioned Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) method. The implementation utilizes the MPI standard for distributed-memory parallelism, while on-node computation is handled using the alpaka framework: this ensures both shared-memory parallelism and inherent performance portability across different hardware architectures. We evaluate the solver's performances on CPUs and GPUs (NVIDIA Hopper H100 and AMD MI250X), comparing different preconditioning strategies, including Block Jacobi and Chebyshev iteration, and analyzing the performances both at single and multi-node level. The execution efficiency is characterized with a strong scaling test and using the AMD Omnitrace profiling tool. Our results indicate that a communication-free preconditioner based on the Chebyshev iteration can speed up the solver by more than six times. The solver shows comparable performances across different GPU architectures, achieving a speed-up in computation up to 50 times compared to the CPU implementation. In addition, it shows a strong scaling efficiency greater than 90% up to 64 devices.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com