Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TH-Bench: Evaluating Evading Attacks via Humanizing AI Text on Machine-Generated Text Detectors (2503.08708v2)

Published 10 Mar 2025 in cs.CR and cs.AI

Abstract: As LLMs advance, Machine-Generated Texts (MGTs) have become increasingly fluent, high-quality, and informative. Existing wide-range MGT detectors are designed to identify MGTs to prevent the spread of plagiarism and misinformation. However, adversaries attempt to humanize MGTs to evade detection (named evading attacks), which requires only minor modifications to bypass MGT detectors. Unfortunately, existing attacks generally lack a unified and comprehensive evaluation framework, as they are assessed using different experimental settings, model architectures, and datasets. To fill this gap, we introduce the Text-Humanization Benchmark (TH-Bench), the first comprehensive benchmark to evaluate evading attacks against MGT detectors. TH-Bench evaluates attacks across three key dimensions: evading effectiveness, text quality, and computational overhead. Our extensive experiments evaluate 6 state-of-the-art attacks against 13 MGT detectors across 6 datasets, spanning 19 domains and generated by 11 widely used LLMs. Our findings reveal that no single evading attack excels across all three dimensions. Through in-depth analysis, we highlight the strengths and limitations of different attacks. More importantly, we identify a trade-off among three dimensions and propose two optimization insights. Through preliminary experiments, we validate their correctness and effectiveness, offering potential directions for future research.

Summary

We haven't generated a summary for this paper yet.