Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chemical reasoning in LLMs unlocks steerable synthesis planning and reaction mechanism elucidation (2503.08537v1)

Published 11 Mar 2025 in cs.AI and cond-mat.mtrl-sci

Abstract: While machine learning algorithms have been shown to excel at specific chemical tasks, they have struggled to capture the strategic thinking that characterizes expert chemical reasoning, limiting their widespread adoption. Here we demonstrate that LLMs can serve as powerful chemical reasoning engines when integrated with traditional search algorithms, enabling a new approach to computer-aided chemistry that mirrors human expert thinking. Rather than using LLMs to directly manipulate chemical structures, we leverage their ability to evaluate chemical strategies and guide search algorithms toward chemically meaningful solutions. We demonstrate this paradigm through two fundamental challenges: strategy-aware retrosynthetic planning and mechanism elucidation. In retrosynthetic planning, our method allows chemists to specify desired synthetic strategies in natural language to find routes that satisfy these constraints in vast searches. In mechanism elucidation, LLMs guide the search for plausible reaction mechanisms by combining chemical principles with systematic exploration. Our approach shows strong performance across diverse chemical tasks, with larger models demonstrating increasingly sophisticated chemical reasoning. Our approach establishes a new paradigm for computer-aided chemistry that combines the strategic understanding of LLMs with the precision of traditional chemical tools, opening possibilities for more intuitive and powerful chemical reasoning systems.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com