Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Dynamic Controller Synthesis for Discrete-Time General Nonlinear Systems (2503.08060v1)

Published 11 Mar 2025 in eess.SY and cs.SY

Abstract: Synthesizing safety controllers for general nonlinear systems is a highly challenging task, particularly when the system models are unknown, and input constraints are present. While some recent efforts have explored data-driven safety controller design for nonlinear systems, these approaches are primarily limited to specific classes of nonlinear dynamics (e.g., polynomials) and are not applicable to general nonlinear systems. This paper develops a direct data-driven approach for discrete-time general nonlinear systems, facilitating the simultaneous learning of control barrier certificates (CBCs) and dynamic controllers to ensure safety properties under input constraints. Specifically, by leveraging the adding-one-integrator approach, we incorporate the controller's dynamics into the system dynamics to synthesize a virtual static-feedback controller for the augmented system, resulting in a dynamic safety controller for the actual dynamics. We collect input-state data from the augmented system during a finite-time experiment, referred to as a single trajectory. Using this data, we learn augmented CBCs and the corresponding virtual safety controllers, ensuring the safety of the actual system and adherence to input constraints over a finite time horizon. We demonstrate that our proposed conditions boil down to some data-dependent linear matrix inequalities (LMIs), which are easy to satisfy. We showcase the effectiveness of our data-driven approach through two case studies: one exhibiting significant nonlinearity and the other featuring high dimensionality.

Summary

We haven't generated a summary for this paper yet.