Global existence of solutions of the stochastic incompressible non-Newtonian fluid models (2503.07908v1)
Abstract: In this paper, we study the existence of solutions of stochastic incompressible non-Newtonian fluid models in $\mathbb{R}$. For the existence of solutions, we assume that the extra stress tensor $S$ is represented by $S({\mathbb A}) = {\mathbb F} ( {\mathbb A}) {\mathbb A}$ for $ n \times n$ matrix ${\mathbb G}$. We assume that ${\mathbb F}(0) $ is uniformly elliptic matrix and \begin{align*} |{\mathbb F}({\mathbb G})|, \,\, | D {\mathbb F} ({\mathbb G})|, \,\, | D2({\mathbb F} ({\mathbb G}) ){\mathbb G}| \leq c \quad \mbox{for all} \quad 0 < |{\mathbb G}| \leq r_0 \end{align*} for some $r_0 > 0$. Note that ${\mathbb F}_1$ and ${\mathbb F}_2$ for $ d \in {\mathbb R}$, and ${\mathbb F}_3$ for $d \geq 3$ introduced in (1.2) satisfy our assumption.