Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting correlation efficiently in stochastic block models: breaking Otter's threshold by counting decorated trees (2503.06464v1)

Published 9 Mar 2025 in cs.DS, math.PR, math.ST, and stat.TH

Abstract: Consider a pair of sparse correlated stochastic block models $\mathcal S(n,\tfrac{\lambda}{n},\epsilon;s)$ subsampled from a common parent stochastic block model with two symmetric communities, average degree $\lambda=O(1)$ and divergence parameter $\epsilon \in (0,1)$. For all $\epsilon\in(0,1)$, we construct a statistic based on the combination of two low-degree polynomials and show that there exists a sufficiently small constant $\delta=\delta(\epsilon)>0$ and a sufficiently large constant $\Delta=\Delta(\epsilon,\delta)$ such that when $\lambda>\Delta$ and $s>\sqrt{\alpha}-\delta$ where $\alpha\approx 0.338$ is Otter's constant, this statistic can distinguish this model and a pair of independent stochastic block models $\mathcal S(n,\tfrac{\lambda s}{n},\epsilon)$ with probability $1-o(1)$. We also provide an efficient algorithm that approximates this statistic in polynomial time. The crux of our statistic's construction lies in a carefully curated family of multigraphs called \emph{decorated trees}, which enables effective aggregation of the community signal and graph correlation from the counts of the same decorated tree while suppressing the undesirable correlations among counts of different decorated trees.

Summary

We haven't generated a summary for this paper yet.