Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SODAs: Sparse Optimization for the Discovery of Differential and Algebraic Equations (2503.05993v1)

Published 8 Mar 2025 in math.DS, cs.LG, and physics.comp-ph

Abstract: Differential-algebraic equations (DAEs) integrate ordinary differential equations (ODEs) with algebraic constraints, providing a fundamental framework for developing models of dynamical systems characterized by timescale separation, conservation laws, and physical constraints. While sparse optimization has revolutionized model development by allowing data-driven discovery of parsimonious models from a library of possible equations, existing approaches for dynamical systems assume DAEs can be reduced to ODEs by eliminating variables before model discovery. This assumption limits the applicability of such methods to DAE systems with unknown constraints and time scales. We introduce Sparse Optimization for Differential-Algebraic Systems (SODAs), a data-driven method for the identification of DAEs in their explicit form. By discovering the algebraic and dynamic components sequentially without prior identification of the algebraic variables, this approach leads to a sequence of convex optimization problems and has the advantage of discovering interpretable models that preserve the structure of the underlying physical system. To this end, SODAs improves numerical stability when handling high correlations between library terms -- caused by near-perfect algebraic relationships -- by iteratively refining the conditioning of the candidate library. We demonstrate the performance of our method on biological, mechanical, and electrical systems, showcasing its robustness to noise in both simulated time series and real-time experimental data.

Summary

We haven't generated a summary for this paper yet.