Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic properties of maximum composite likelihood estimators for max-stable Brown-Resnick random fields over a fixed-domain (2503.05880v1)

Published 14 Feb 2025 in math.ST and stat.TH

Abstract: Likelihood inference for max-stable random fields is in general impossible because their finite-dimensional probability density functions are unknown or cannot be computed efficiently. The weighted composite likelihood approach that utilizes lower dimensional marginal likelihoods (typically pairs or triples of sites that are not too distant) is rather favored. In this paper, we consider the family of spatial max-stable Brown-Resnick random fields associated with isotropic fractional Brownian fields. We assume that the sites are given by only one realization of a homogeneous Poisson point process restricted to $\mathbf{C}=(-1/2,1/2]{2}$ and that the random field is observed at these sites. As the intensity increases, we study the asymptotic properties of the composite likelihood estimators of the scale and Hurst parameters of the fractional Brownian fields using different weighting strategies: we exclude either pairs that are not edges of the Delaunay triangulation or triples that are not vertices of triangles.

Summary

We haven't generated a summary for this paper yet.