Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Labeling Synthetic Content: User Perceptions of Warning Label Designs for AI-generated Content on Social Media (2503.05711v1)

Published 14 Feb 2025 in cs.HC, cs.AI, cs.CY, and cs.ET

Abstract: In this research, we explored the efficacy of various warning label designs for AI-generated content on social media platforms e.g., deepfakes. We devised and assessed ten distinct label design samples that varied across the dimensions of sentiment, color/iconography, positioning, and level of detail. Our experimental study involved 911 participants randomly assigned to these ten label designs and a control group evaluating social media content. We explored their perceptions relating to 1. Belief in the content being AI-generated, 2. Trust in the labels and 3. Social Media engagement perceptions of the content. The results demonstrate that the presence of labels had a significant effect on the users belief that the content is AI generated, deepfake, or edited by AI. However their trust in the label significantly varied based on the label design. Notably, having labels did not significantly change their engagement behaviors, such as like, comment, and sharing. However, there were significant differences in engagement based on content type: political and entertainment. This investigation contributes to the field of human computer interaction by defining a design space for label implementation and providing empirical support for the strategic use of labels to mitigate the risks associated with synthetically generated media.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com