Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Improved Density Functional Theory Thermodynamics (2503.05525v1)

Published 7 Mar 2025 in cond-mat.mtrl-sci and cs.LG

Abstract: The predictive accuracy of density functional theory (DFT) for alloy formation enthalpies is often limited by intrinsic energy resolution errors, particularly in ternary phase stability calculations. In this work, we present a ML approach to systematically correct these errors, improving the reliability of first-principles predictions. A neural network model has been trained to predict the discrepancy between DFT-calculated and experimentally measured enthalpies for binary and ternary alloys and compounds. The model utilizes a structured feature set comprising elemental concentrations, atomic numbers, and interaction terms to capture key chemical and structural effects. By applying supervised learning and rigorous data curation we ensure a robust and physically meaningful correction. The model is implemented as a multi-layer perceptron (MLP) regressor with three hidden layers, optimized through leave-one-out cross-validation (LOOCV) and k-fold cross-validation to prevent overfitting. We illustrate the effectiveness of this method by applying it to the Al-Ni-Pd and Al-Ni-Ti systems, which are of interest for high-temperature applications in aerospace and protective coatings.

Summary

We haven't generated a summary for this paper yet.