Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed norm estimates for dilated averages over planar curves (2503.05140v1)

Published 7 Mar 2025 in math.AP and math.CA

Abstract: In this paper, we investigate the mixed norm estimates for the operator $ T $associated with a dilated plane curve $(ut, u\gamma(t))$, defined by [ Tf(x, u) := \int_{0}{1} f(x_1 - ut, x_2 - u\gamma(t)) \, dt, ] where $ x := (x_1, x_2) $ and $\gamma $ is a general plane curve satisfying appropriate smoothness and curvature conditions. Our results partially address a problem posed by Hickman [J. Funct. Anal. 2016] in the two-dimensional setting. More precisely, we establish the $ L_xp(\mathbb{R}2) \rightarrow L_xq L_ur(\mathbb{R}2 \times [1, 2]) $ (space-time) estimates for $ T $, whenever $(\frac{1}{p},\frac{1}{q})$ satisfy [ \max\left{0, \frac{1}{2p} - \frac{1}{2r}, \frac{3}{p} - \frac{r+2}{r}\right} < \frac{1}{q} \leq \frac{1}{p} < \frac{r+1}{2r} ] and $$1 + (1 + \omega)\left(\frac{1}{q} - \frac{1}{p}\right) > 0,$$ where $ r \in [1, \infty] $ and $ \omega := \limsup_{t \rightarrow 0+} \frac{\ln|\gamma(t)|}{\ln t} $. These results are sharp, except for certain borderline cases. Additionally, we examine the $ L_xp(\mathbb{R}2) \rightarrow L_ur L_xq(\mathbb{R}2 \times [1, 2]) $ (time-space) estimates for $T $, which are especially almost sharp when $p=2$.

Summary

We haven't generated a summary for this paper yet.