Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of non-reversible Markov processes via lifting and flow Poincar{é} inequality (2503.04238v1)

Published 6 Mar 2025 in math.AP, math.FA, and math.PR

Abstract: We propose a general approach for quantitative convergence analysis of non-reversible Markov processes, based on the concept of second-order lifts and a variational approach to hypocoercivity. To this end, we introduce the flow Poincar{\'e} inequality, a space-time Poincar{\'e} inequality along trajectories of the semigroup, and a general divergence lemma based only on the Dirichlet form of an underlying reversible diffusion. We demonstrate the versatility of our approach by applying it to a pair of run-and-tumble particles with jamming, a model from non-equilibrium statistical mechanics, and several piecewise deterministic Markov processes used in sampling applications, in particular including general stochastic jump kernels.

Summary

We haven't generated a summary for this paper yet.