Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causality-Based Reinforcement Learning Method for Multi-Stage Robotic Tasks (2503.03145v1)

Published 5 Mar 2025 in cs.RO

Abstract: Deep reinforcement learning has made significant strides in various robotic tasks. However, employing deep reinforcement learning methods to tackle multi-stage tasks still a challenge. Reinforcement learning algorithms often encounter issues such as redundant exploration, getting stuck in dead ends, and progress reversal in multi-stage tasks. To address this, we propose a method that integrates causal relationships with reinforcement learning for multi-stage tasks. Our approach enables robots to automatically discover the causal relationships between their actions and the rewards of the tasks and constructs the action space using only causal actions, thereby reducing redundant exploration and progress reversal. By integrating correct causal relationships using the causal policy gradient method into the learning process, our approach can enhance the performance of reinforcement learning algorithms in multi-stage robotic tasks.

Summary

We haven't generated a summary for this paper yet.