Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReSo: A Reward-driven Self-organizing LLM-based Multi-Agent System for Reasoning Tasks (2503.02390v3)

Published 4 Mar 2025 in cs.MA

Abstract: Multi-agent systems (MAS) have emerged as a promising approach for enhancing the reasoning capabilities of LLMs in complex problem-solving; however, current MAS frameworks suffer from poor flexibility and scalability with underdeveloped optimization strategies. To address these challenges, we propose ReSo, which integrates task graph generation with a reward-driven two-stage agent selection process centered on our Collaborative Reward Model that provides fine-grained reward signals to optimize MAS cooperation. We also introduce an automated data synthesis framework for generating MAS benchmarks without any human annotations. Experimental results show that ReSo matches or outperforms existing methods, achieving 33.7 percent accuracy on Math-MAS and 32.3 percent accuracy on SciBench-MAS, where other approaches completely fail.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com