Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models (2503.02175v2)

Published 4 Mar 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated LLM. Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{https://github.com/vbdi/divprune}{\text{here}}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Saeed Ranjbar Alvar (17 papers)
  2. Gursimran Singh (7 papers)
  3. Mohammad Akbari (43 papers)
  4. Yong Zhang (660 papers)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com