Papers
Topics
Authors
Recent
2000 character limit reached

Survey Perspective: The Role of Explainable AI in Threat Intelligence

Published 3 Mar 2025 in cs.CR, cs.AI, and cs.IR | (2503.02065v1)

Abstract: The increasing reliance on AI-based security tools in Security Operations Centers (SOCs) has transformed threat detection and response, yet analysts frequently struggle with alert overload, false positives, and lack of contextual relevance. The inability to effectively analyze AI-generated security alerts lead to inefficiencies in incident response and reduces trust in automated decision-making. In this paper, we show results and analysis of our investigation of how SOC analysts navigate AI-based alerts, their challenges with current security tools, and how explainability (XAI) integrated into their security workflows has the potential to become an effective decision support. In this vein, we conducted an industry survey. Using the survey responses, we analyze how security analysts' process, retrieve, and prioritize alerts. Our findings indicate that most analysts have not yet adopted XAI-integrated tools, but they express high interest in attack attribution, confidence scores, and feature contribution explanations to improve interpretability, and triage efficiency. Based on our findings, we also propose practical design recommendations for XAI-enhanced security alert systems, enabling AI-based cybersecurity solutions to be more transparent, interpretable, and actionable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.