Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FRMD: Fast Robot Motion Diffusion with Consistency-Distilled Movement Primitives for Smooth Action Generation (2503.02048v1)

Published 3 Mar 2025 in cs.RO and cs.AI

Abstract: We consider the problem of using diffusion models to generate fast, smooth, and temporally consistent robot motions. Although diffusion models have demonstrated superior performance in robot learning due to their task scalability and multi-modal flexibility, they suffer from two fundamental limitations: (1) they often produce non-smooth, jerky motions due to their inability to capture temporally consistent movement dynamics, and (2) their iterative sampling process incurs prohibitive latency for many robotic tasks. Inspired by classic robot motion generation methods such as DMPs and ProMPs, which capture temporally and spatially consistent dynamic of trajectories using low-dimensional vectors -- and by recent advances in diffusion-based image generation that use consistency models with probability flow ODEs to accelerate the denoising process, we propose Fast Robot Motion Diffusion (FRMD). FRMD uniquely integrates Movement Primitives (MPs) with Consistency Models to enable efficient, single-step trajectory generation. By leveraging probabilistic flow ODEs and consistency distillation, our method models trajectory distributions while learning a compact, time-continuous motion representation within an encoder-decoder architecture. This unified approach eliminates the slow, multi-step denoising process of conventional diffusion models, enabling efficient one-step inference and smooth robot motion generation. We extensively evaluated our FRMD on the well-recognized Meta-World and ManiSkills Benchmarks, ranging from simple to more complex manipulation tasks, comparing its performance against state-of-the-art baselines. Our results show that FRMD generates significantly faster, smoother trajectories while achieving higher success rates.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com