Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

SRAG: Structured Retrieval-Augmented Generation for Multi-Entity Question Answering over Wikipedia Graph (2503.01346v2)

Published 3 Mar 2025 in cs.CL and cs.IR

Abstract: Multi-entity question answering (MEQA) poses significant challenges for LLMs, which often struggle to consolidate scattered information across multiple documents. An example question might be "What is the distribution of IEEE Fellows among various fields of study?", which requires retrieving information from diverse sources e.g., Wikipedia pages. The effectiveness of current retrieval-augmented generation (RAG) methods is limited by the LLMs' capacity to aggregate insights from numerous pages. To address this gap, this paper introduces a structured RAG (SRAG) framework that systematically organizes extracted entities into relational tables (e.g., tabulating entities with schema columns like "name" and "field of study") and then apply table-based reasoning techniques. Our approach decouples retrieval and reasoning, enabling LLMs to focus on structured data analysis rather than raw text aggregation. Extensive experiments on Wikipedia-based multi-entity QA tasks demonstrate that SRAG significantly outperforms state-of-the-art long-context LLMs and RAG solutions, achieving a 29.6% improvement in accuracy. The results underscore the efficacy of structuring unstructured data to enhance LLMs' reasoning capabilities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.