Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bandit-Based Prompt Design Strategy Selection Improves Prompt Optimizers (2503.01163v1)

Published 3 Mar 2025 in cs.AI, cs.CL, cs.HC, cs.LG, and cs.NE

Abstract: Prompt optimization aims to search for effective prompts that enhance the performance of LLMs. Although existing prompt optimization methods have discovered effective prompts, they often differ from sophisticated prompts carefully designed by human experts. Prompt design strategies, representing best practices for improving prompt performance, can be key to improving prompt optimization. Recently, a method termed the Autonomous Prompt Engineering Toolbox (APET) has incorporated various prompt design strategies into the prompt optimization process. In APET, the LLM is needed to implicitly select and apply the appropriate strategies because prompt design strategies can have negative effects. This implicit selection may be suboptimal due to the limited optimization capabilities of LLMs. This paper introduces Optimizing Prompts with sTrategy Selection (OPTS), which implements explicit selection mechanisms for prompt design. We propose three mechanisms, including a Thompson sampling-based approach, and integrate them into EvoPrompt, a well-known prompt optimizer. Experiments optimizing prompts for two LLMs, Llama-3-8B-Instruct and GPT-4o mini, were conducted using BIG-Bench Hard. Our results show that the selection of prompt design strategies improves the performance of EvoPrompt, and the Thompson sampling-based mechanism achieves the best overall results. Our experimental code is provided at https://github.com/shiralab/OPTS .

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com